SOLANOCASTRINE, A UNIQUE 16,23-CYCLO-22,26-EPIMINOCHOLESTANE FROM SOLANUM CAPSICASTRUM¹

Ajit K. Chakravarty and Satyesh C. Pakrashi* Indian Institute of Chemical Biology, Calcutta-700 032, India.

Abstract - Solanocastrine (1), a novel 3-amino steroidal alkaloid, isolated from the leaves of <u>Solanum capsicastrum</u> Link has been characterised as 3β -amino-16,23-cyclo-23 β -hydroxy-5 ∞ H, 16 $\frac{4}{3}$ H, 25 β H-22,26-epiminocholestan-17(20),22(N)-diene.

In continuation of our studies² on the alkaloids of the leaves of <u>S</u>. <u>capsicastrum</u> Link, we isolated a unique 16,23-cyclo-22,26-epiminocholestane derivative, designated as solanocastrine (1), as a very minor compound. It was separated by repeated column chromatography (neutral alumina) followed by preparative TLC (CHCl₃:MeOH, 98:2 saturated with NH₃) of the crude alkaloid mixture obtained by hydrolysis (10% HCl-MeOH) of the methanolic extract. Herein we report the structure elucidation of the alkaloid **1**.

The IR spectrum of solanocastrine $[C_{27}H_{42}N_2O$, m.p. 258-260°d, $[d_{D}]_{D} \pm 0^{\circ}(\text{CHCl}_{3})$; $\underline{m/z}$ (rel.intensity) 410(M⁺, 47), 392(55), 382(18), 377(19), 367(6), 340(6), 214(11), 177(100) 162(17), 82(15), 56(47)] showed, besides the peaks for OH and NH₂ groups (at 3340, 3220 and 3160 cm⁻¹), a strong absorption band at 1630 cm⁻¹ indicating the presence of an d_{β} -unsaturated C=N grouping in the molecule supported by the UV absorption maximum at 247 nm (log \notin 4.06). This contention was further corroborated by the ¹³C NMR spectrum of the alkaloid (Table 1) which exhibited three low-field singlets at δ 183.3, 169.1 and 122.6 ppm assignable respectively to C-17(Cg), C-22(C=N) and C-20(Cg). The above data allowed us also to conclude the tetrasubstituted nature of the C=C. Furthermore, the spectrum displayed signals for A and B ring carbons very close (Table 1) to those of solanocapsine (2), the co-occuring alkaloid, suggesting the same 3 β -amino-5d-stereochemistry for 1 as well. The presence of a tertiary OH group in the alkaloid became evident from the singlet at δ 75.1 ppm.

That the tetrasubstituted double bond of the \pounds,β -unsaturated imine moiety of 1 is located between C-17 and C-20 could be ascertained from the appearance of the 20-Me proton signal as a doublet at δ 1.79 ppm with J=2 Hz in its ¹H NMR spectrum (Table 2), the small splitting of the signal being ascribed to its allylic coupling with 16-H.

The EIMS of the alkaloid 1 showed, apart from the peaks at m/z 56 and 82 diagnostic³ of 3-amino-5,6-dihydro steroids and intense peaks due to M⁺ and M⁺-H₂O, the base peak at m/z 177 (species <u>a</u>) compatible with the location of the tertiary OH group in either of the rings E and F. Of the two possibilities, position C-25 could be ruled out since the ¹H NMR spectrum clearly demonstrated the presence of a secondary methyl at C-25. The OH group must, therefore, be located at C-23.

Reduction of the alkaloid 1 with NaBH₄ or Li-liq. NH₃ yielded the dihydroderivative 3 [m.p. 242-244°, V_{max} (KBr) 3400-3200(NH₂, NH, OH) cm⁻¹; <u>m/z</u> (rel.intensity) 412(M⁺, 21), 395 (36), 394(25), 379(11), 357(87), 337(10), 322(6), 82(36), 56(100); N,N'-diacetate (4), m.p. 266-268°, $\mathcal{V}_{max}(KBr)$ 1650-1610(NAc) cm⁻¹; m/z 496(M⁺)]. The appearance of a new doublet at δ 77.4 ppm in its ¹³C NMR spectrum at the expense of the singlet at δ 169.1 ppm of 1 and the up-field shift of its C-17 signal by \sim 31 ppm with respect to that of 1 clearly suggested the reduction of C=N group with $\Delta^{17(20)}$ double bond remaining intact. Its ¹H NMR spectrum also displayed the signal for 20-Me protons as a doublet with J=2Hz as in 1 supporting the existence of $\triangle^{17(20)}$ double bond in 3.

The alkaloid on treatment with HCHO-HCO, H at 100° for 2 hr furnished the keto-N,N,N',N'-tetramethyl derivative (5) [amorphous, λ_{max} (EtOH) 247 nm (log ϵ 3.97); m/z (rel. intensity) 484(M⁺, 3), 466(1), 182(2), 181(2), 135(3), 128(2), 110(11), 105(10), 98(7), 84(34), 58(100)] which could be reduced by NaBH, to the diol (6) [m/z] 486 (M^+)]. The F ring opened structure 5 was indeed supported by (i) the strong band at 1700 $\rm cm^{-1}$ for five membered \mathcal{A}, eta -unsaturated ring ketone in its IR spectrum, (ii) the most intense peak at m/z 58(species b) almost certainly arising out of the cleavage of the bond between C-25 and C-26 in its mass spectrum and (iii) a new 13 C NMR signal at δ 213.7 ppm for an lpha,eta-unsaturated carbonyl carbon. The formation of 5 could presumably be explained by hydrolysis of

6 $R^{I} = R^{3} = NMe_{2}, R^{2} < CH^{H}$

 $7 R^{1} = R^{3} = NH_{2}, R^{2} = 0$

9 $R^{1} = R^{2} = NHAc$, $R^{2} = 0$

8 R¹ = OAc, R² = OH

10 R¹ = R² = H

a m/z 177

 $\frac{Me}{Me}$ $\stackrel{+}{N} = CH_2$

<u>b m /z</u> 58

Carbon	1	2 <u>b</u>	3	5	8	carbon	1	2 ^b	3	5	8
1	37.9	37.2	37.6	37.7	37.2	17	183.3	60.6	152.4	183.0	103.3
2	31.2	31.6	31.5	24.7	28.5	18	15.9	13.5	16.4	15.7	15.4
3	51.3	50.7	51.0	64.0	48.9	19	12.3	12.1	12.2	12.2	12.2
4	37.9	38.9	39.0	31,1	35.9	20	122.6	32,8	124.5	124.2	129.1
5	45.8	45.4	45.5	45.6	45.3	21	9.1	15.0	12.5	8.1	11.7
6	28.4	28.4	28.6	28.9	28.8	22	169.1	68.4	77.4	213.7	144.9
7	33.7	32.1	32.6	31.5	31.8	23	75.1	95.7	78.5	75.9	79.3
8	35.7	34.7	35.8	35.8	35.0	24	41.4	45.9	41.5	47.4	45.1
9	54.7	54.6	54.7	54.7	54.4	25	29.3	30.1	31.0	26.2	27.7
10	35.5	35.4	35.5	35.8	35.4	26	54.7	54.6	52.0	68.1	48.9
11	20.8	20.2	20.7	20.7	20.8	27	20.3	18.6	18.9	22.0	19.2
12	35.3	38.9	35.3	34.5	35.2	NMe,	-	-	-	41.8	-
13	43.0	41.5	41.8	44.5	48.4	N'Me,	-	-	-	45.0	-
14	56.8	54.6	58.2	54.3	50.4	NAc &	-	-	-	-	21.3,21.8,
15	21.3	28.2	21.4	21.6	26.4	OAc	-	-	-	-	23.5, 169.1
16	55.1	73.8	49.7	51.8	52.8						10/10

Table 1. 13 C chemical shifts^a (δ ppm from TMS) of solanocastrine (1) and its derivatives.

<u>a</u> The spectra were recorded in $CDCl_3$. <u>b</u> Data incorporated from ref. 4.

Compd.	10-Me	13-Me	20-Me	25-Me	3-H	22-H	26-H <u>eq</u>	26-Hax	Others
1	0.79s	0.95s	1.79d(2)	0.98d(6)	2.56br	-	3.66dd	3.21dd	2.78dd(10,2)
2 <u>b</u>	0.73s	0.77s	0.93d(6)	0.83d(6)	-	-	(14, 4) 3.02br (9)	d -	2.65m
3	0.79s	0.88s	1.76d(2)	0.88d(6)	2.62m	3.1ls	3.20br (13)	d2.91br d	-
4	0.80s	0.94s	1.63d(2)	1.05d(6)	3.72m (W $=22$)	-	3.16m	3.16m	1.93,2.15(NAc x 2)
5	0.80s	1.01s	1.71d(2)	0.86d(7)	-	-	-	-	2.27,2.31(NMe ₂ x 2)
6	0.78s	0.82s	1.64d(2)	0.89d(7)	-	4.30s	-	-	2.27,2.32(NMe ₂ x 2)
8	0.80s	0.95s	1.52s	0.92d(7)	3.72m	-	4.14dd	3.14dd	$2.07(OA_{C}), 2.02, 1.93$ (NAcx2) 5 24d(CONH)
9	0.82s	1.05s	1.75d(2)	1.00d(6)	3.72m (W½=23)	-	-	-	2.00,1.93(NAcx2),2.80 3.30m(?),5.30d,6.00 t-like(CONHx2)

Table 2. ¹H chemical shifts^a (δ ppm from TMS) of solanocastrine (1) and its derivatives.

a The spectra were taken in $CDCl_3$. Figures in the parentheses are the coupling constants in Hz. <u>b</u> Ref.4.

C=N group to the ketoamine (7) followed by methylation.

Acetylation of the alkaloid with Ac_2O-Py at room temp. for 20 hr yielded a N,N',O-triacetate (8) [m.p. 194-196°, ψ_{max} (KBr) 1730(OAc), 1630(NAc) cm⁻¹; λ_{max} (EtOH) 225 nm (logé 3.44); $\underline{m/z}$ 494(M⁺- AcOH)] as the major product besides a minor N,N'-diacetate (9) [m.p. 164-166°, ψ_{max} (KBr) 1700(\measuredangle,β -unsaturated five membered ring ketone), 1655-1640(NAc) cm⁻¹; λ_{max} (EtOH) 248 nm (logé 3.63), $\underline{m/z}$ 512(M⁺)]. The acetates 8 and 9 could apparently be derived from the respective 1,4 and 1,2 addition of Ac_2O molecule to the \measuredangle,β -unsaturated imine moiety.

The triacetate (8) on hydrogenation in presence of 10% pd/c and HClO₄ yielded 10 $[\underline{m}/\underline{z} \ 480(M^+), \ 465(M^+ - CH_3), \ 437(M^+ - CH_3CO), \ 204(species \underline{c}), \ 191(species \underline{d}), \ 162(\underline{c}-42), \ 149(\underline{d}-42), \ 120, \ 118]$ in which both the 17-OAc and 23-OH groups were hydrogenolysed confirming thereby the structure of 8. The strong ion peaks at $\underline{m}/\underline{z}$ 204 (species <u>c</u>) and 191 (species <u>d</u>) in the EIMS of 10 clearly demonstrated a direct linkage between C-16 and C-23 in the alkaloid 1.

A comparison of the ¹³C NMR spectra revealed that C-25 of both 1 (δ 29.3 ppm) and its dihydro derivative (3) (δ 31.0 ppm) resonated close to that of solanocapsine (2) (δ 30.1 ppm) indicating that 23-OH and 25-Me groups of 1 should have the same β and **c** orientations respectively as in 2. This conclusion was also supported by (i) the upfield shift of C-15 signal of 1 and 3 by ~7 ppm due its γ'_g interaction with 23-OH group and (ii) the close chemical shift of 25-Me carbon of 1 (δ 20.3 ppm) and 3 (δ 18.9 ppm) with that of 2 (δ 18.6 ppm). A small difference in the chemical shifts of C-24 to C-27 carbons of 1 and 3 when compared with those of 2 is not unexpected in view of the double bond(s) present in the E/F ring system of the former. The ¹H chemical shift of 25-Me protons of 3 at δ 0.88 ppm which is close (Table 2) to that of 2 (0.83 ppm) also corroborated the assigned orientation of 23-OH and 25-Me groups. The stereochemistry at C-16 could not, however, be established from the available data.

Based on the above evidences, solanocastrine could be assigned 3β -amino-16,23cyclo-23 β -hydroxy-5 \pounds H, 16 \ddagger H, 25 β H-22, 26-epiminocholestan-17(20), 22(N)-diene structure(1). It thus represents a new class of steroidal alkaloid with a novel C-C linkage between C-16 and C-23 in a 22, 26-epiminocholestane skeleton.

References

- 1. Part 86 in the series "Studies on Indian Medicinal Plants". For Part 85, see ref.2.
- 2. A.K. Chakravarty and S.C. Pakrashi, Phytochemistry, in press.
- 3. H. Budzikiewicz, C. Djerassi and D. Williams, "Structure Elucidation of Natural Products by Mass-spectrometry", Holden-day, San-Francisco, Vol.2, p.5(1964).
- A.K. Chakravarty, B. Das, E. Ali and S.C. Pakrashi, <u>J.Chem.Soc.Perkin Trans.l</u>, 467(1984).

(Received in UK 21 July 1987)